

AC-GAN

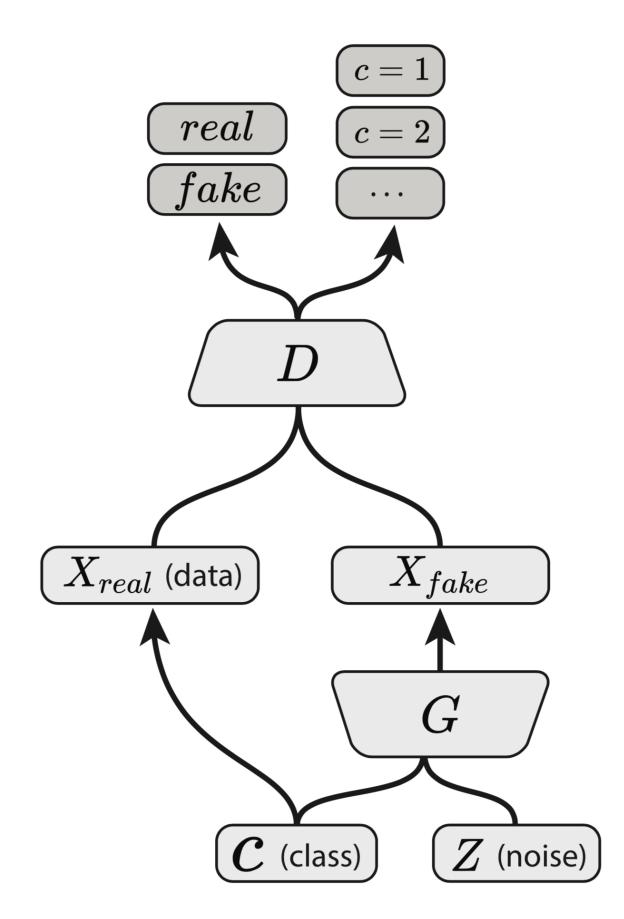


Figure: AC-GAN model (taken from AC-GAN paper). In AC-GAN's implementation, note parameter-sharing between discriminator D and inference model q_{ϕ} .

Model description

- Supervised InfoGAN
- Minimize divergence between $p^*(x)$ and $p_{\theta}(x)$ $d(p^*(x), p_{\theta}(x)) =$

$$\max_{D} \mathbb{E}_{p^*(x)} \ln D(x) + \mathbb{E}_{p_{\theta}(x)} \ln(1 - D(x))$$

• Minimize conditional entropy $H_{\theta}(Y|X)$ variational upper bound

$$\begin{aligned} H_{\theta}(Y|X) &\leq \mathbb{E}_{p_{\theta}(x)} \mathbb{D}_{\mathrm{KL}}(p_{\theta}(y \mid x) \| q_{\phi}(y \mid x)) \\ &\quad -\mathbb{E}_{p_{\theta}(x)} \mathbb{E}_{p_{\theta}(y \mid x)} \ln p_{\theta}(y \mid x) \\ &= -\mathbb{E}_{p_{\theta}(x,y)} \ln q_{\phi}(y \mid x) \end{aligned}$$

a.k.a. synthetic data cross-entropy

• Minimize real data cross-entropy $\mathbb{E}_{p^*(x,y)}\left[\ln q_\phi(y \mid x)\right]$

Responsibilities of q_{ϕ}

- Approximate posterior inference of $p_{\theta}(x, y)$
- Auxiliary classifier of $p^*(x, y)$

Relevant questions

- Why does AC-GAN work?
- In what way is AC-GAN's distribution biased?

AC-GAN Learns a Biased Distribution Rui Shu¹, Hung Bui², Stefano Ermon¹

¹Stanford University and ²Adobe Research

A Lagrangian Perspective

Primal Problem

 $\min_{\theta,\phi} d(p^*(x), p_{\theta}(x))$ s.t. $H_{\theta}(Y|X) \leq \epsilon$ $\mathbb{E}_{p_{\theta}(x)} \mathcal{D}_{\mathrm{KL}}(p_{\theta}(y \mid x) \| q_{\phi}(y \mid x)) = 0$ $\mathbb{E}_{p^*(x)} \mathcal{D}_{\mathrm{KL}}(p^*(y \mid x) \| q_{\phi}(y \mid x)) = 0.$

- AC-GAN objective interpreted as Lagrangian to the above primal problem
- Assuming support $p_{\theta}(x) \subseteq$ support $p^*(x)$ for all $\theta \in \Theta$, there is an equivalent form

Equivalent Problem

 $\min_{\theta,\phi} d(p^*(x), p_{\theta}(x))$

s.t. $\mathbb{E}_{p_{\theta}(x)} H(p^*(y \mid x)) \leq \epsilon$ $\mathbb{E}_{p_{\theta}(x)} \mathcal{D}_{\mathrm{KL}}(p_{\theta}(y \mid x) || q_{\phi}(y \mid x)) = 0$ $\mathbb{E}_{p^*(x)} \mathcal{D}_{\mathrm{KL}}(p^*(y \mid x) \| q_{\phi}(y \mid x)) = 0.$

Avoiding the Decision Boundary

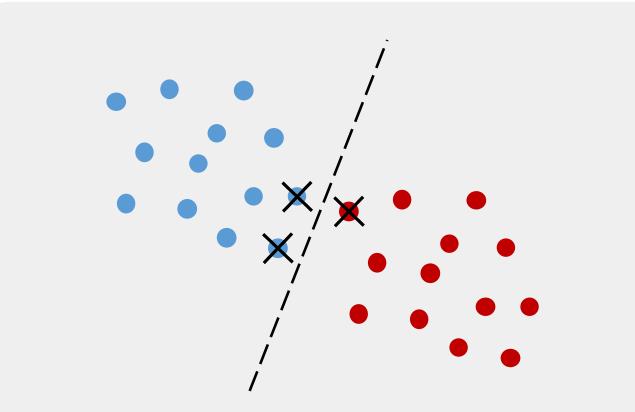
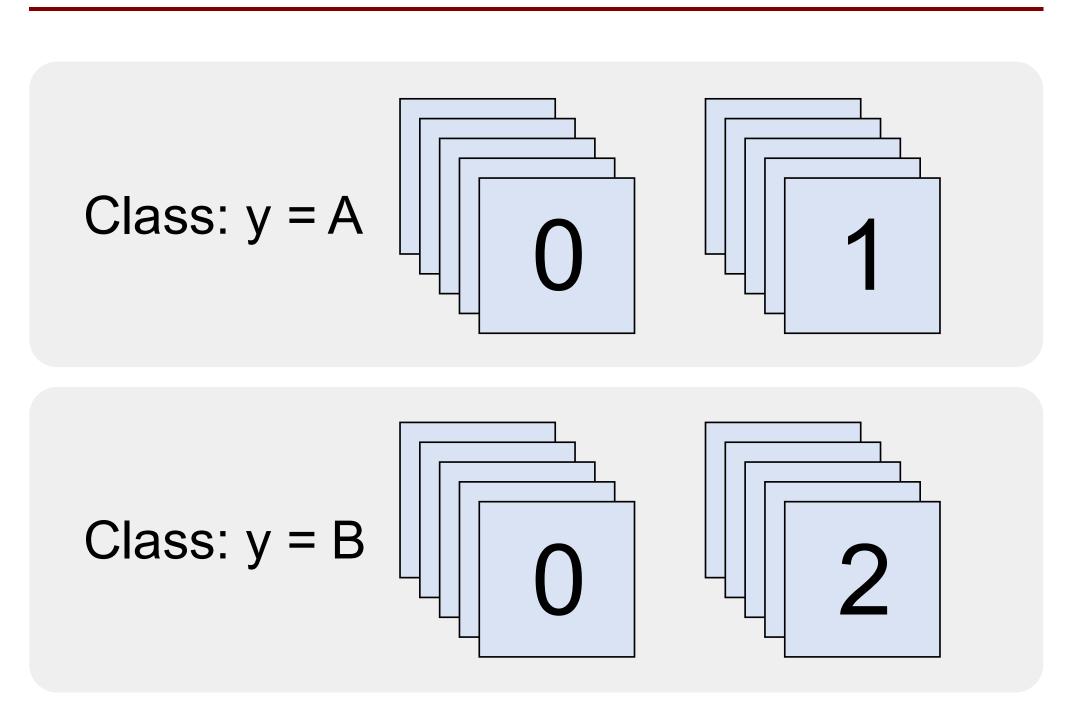
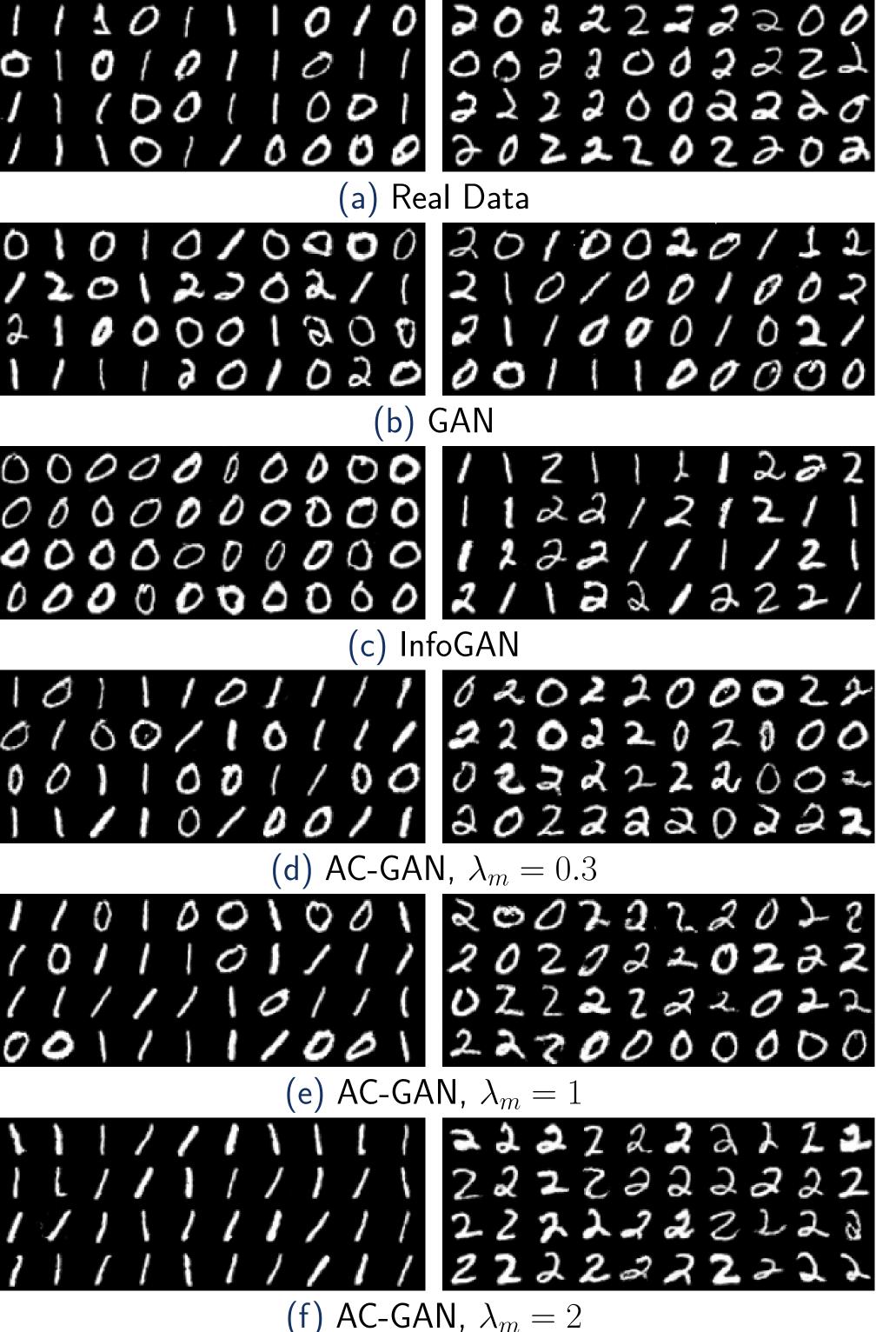
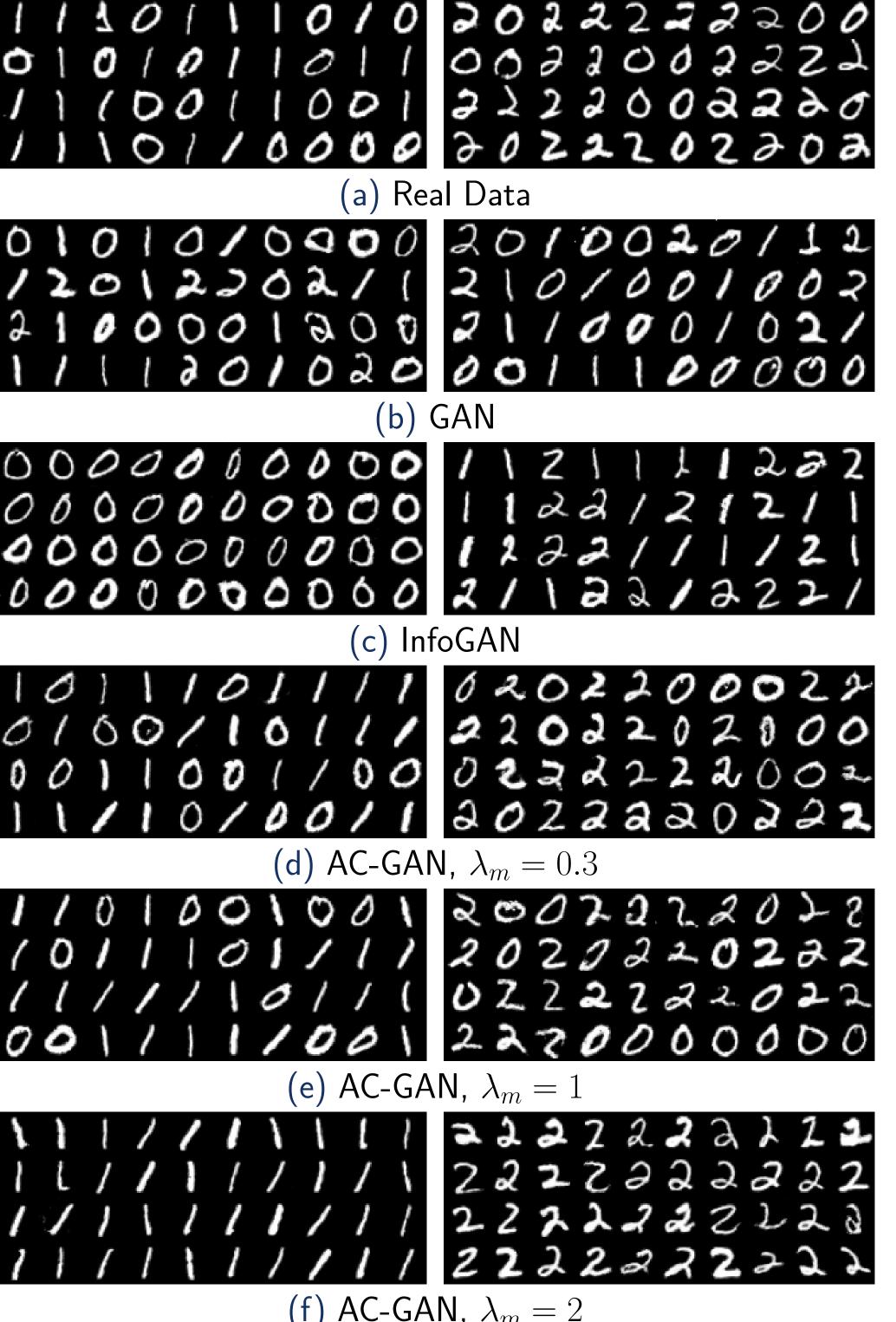


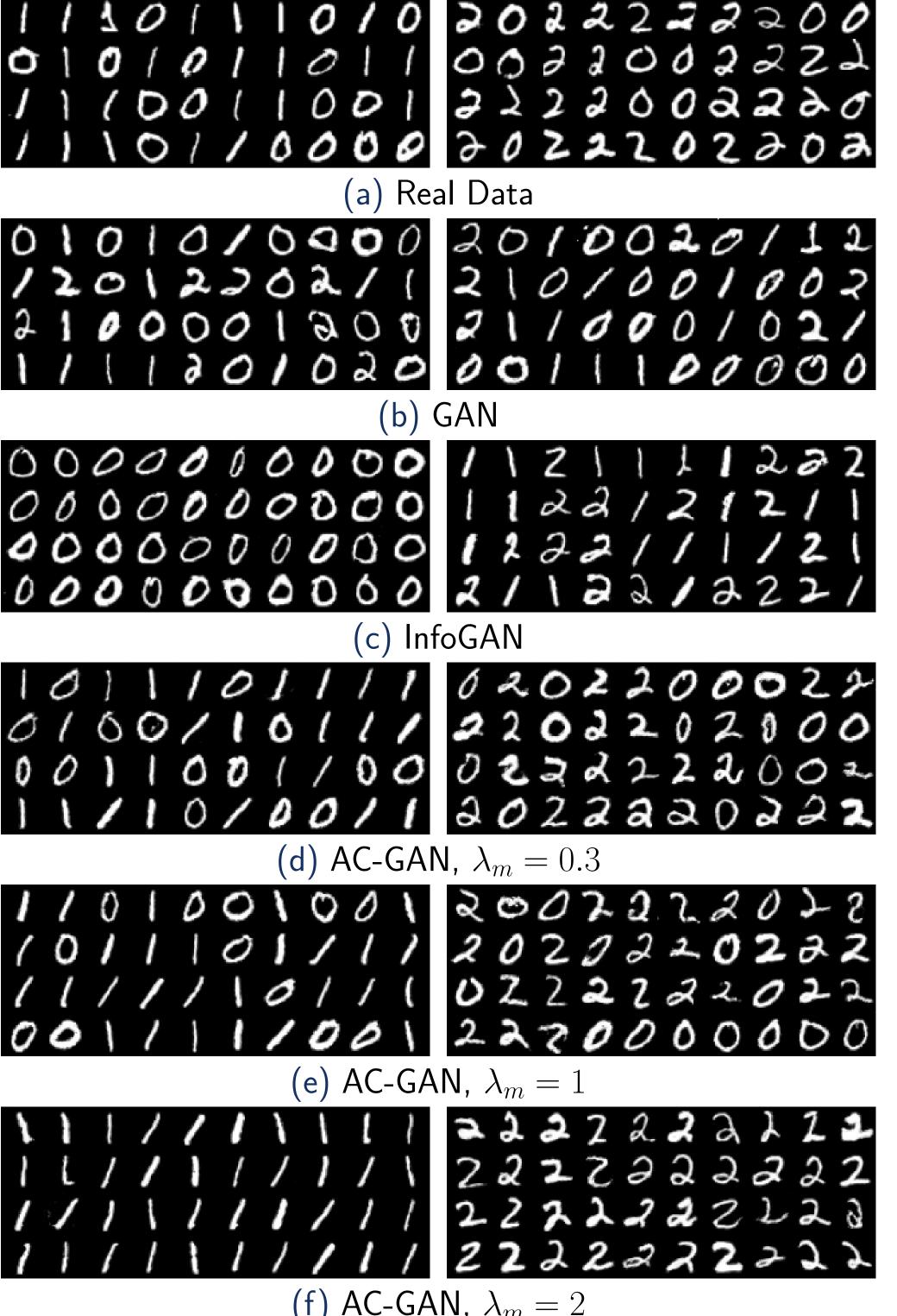
Figure: AC-GAN avoids sampling near decision boundary.

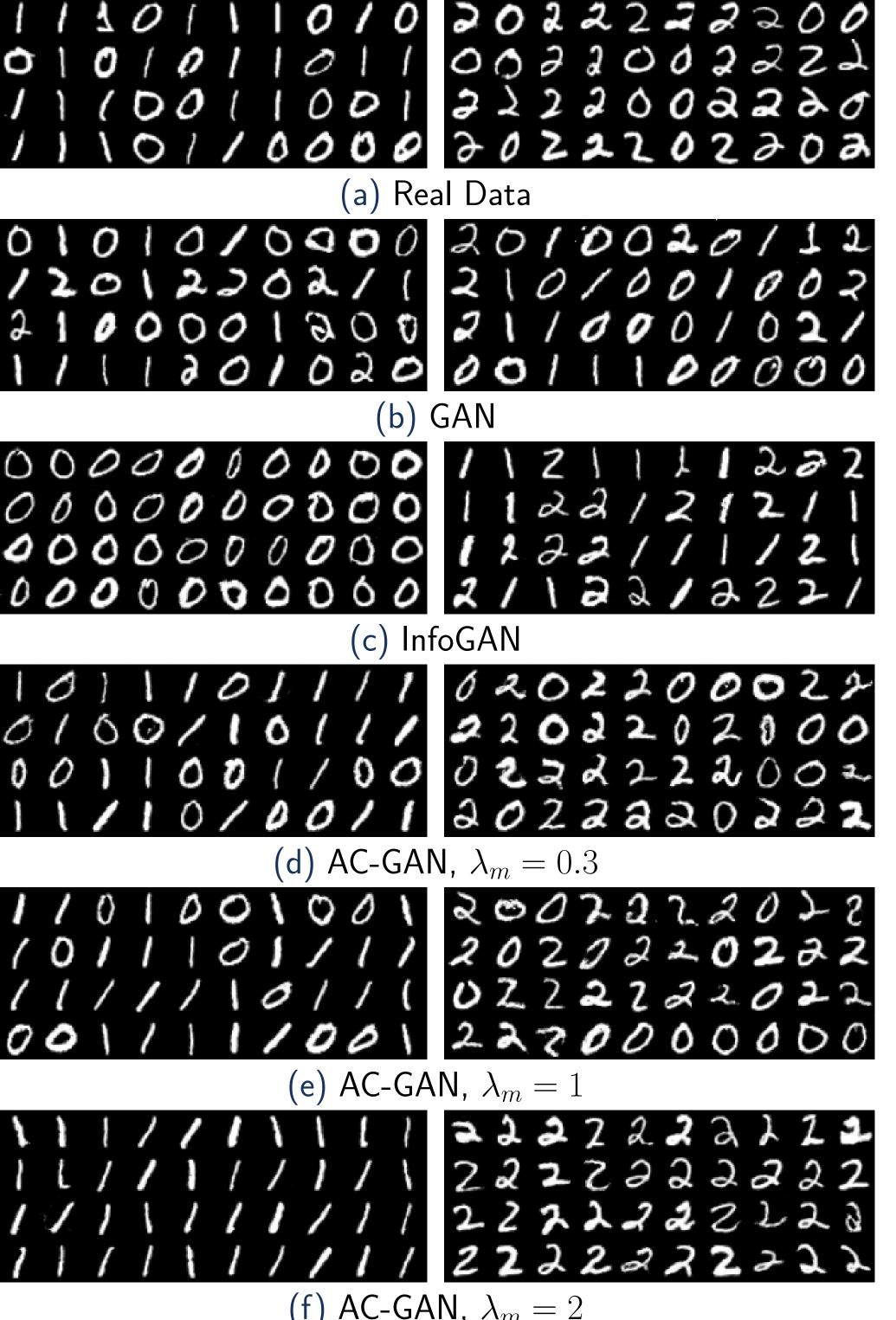
- AC-GAN, on expectation, constrained from sampling points that are uncertain w.r.t. $p^*(y \mid x)$
- Problematic if $p^*(x)$ is concentrated near decision boundary











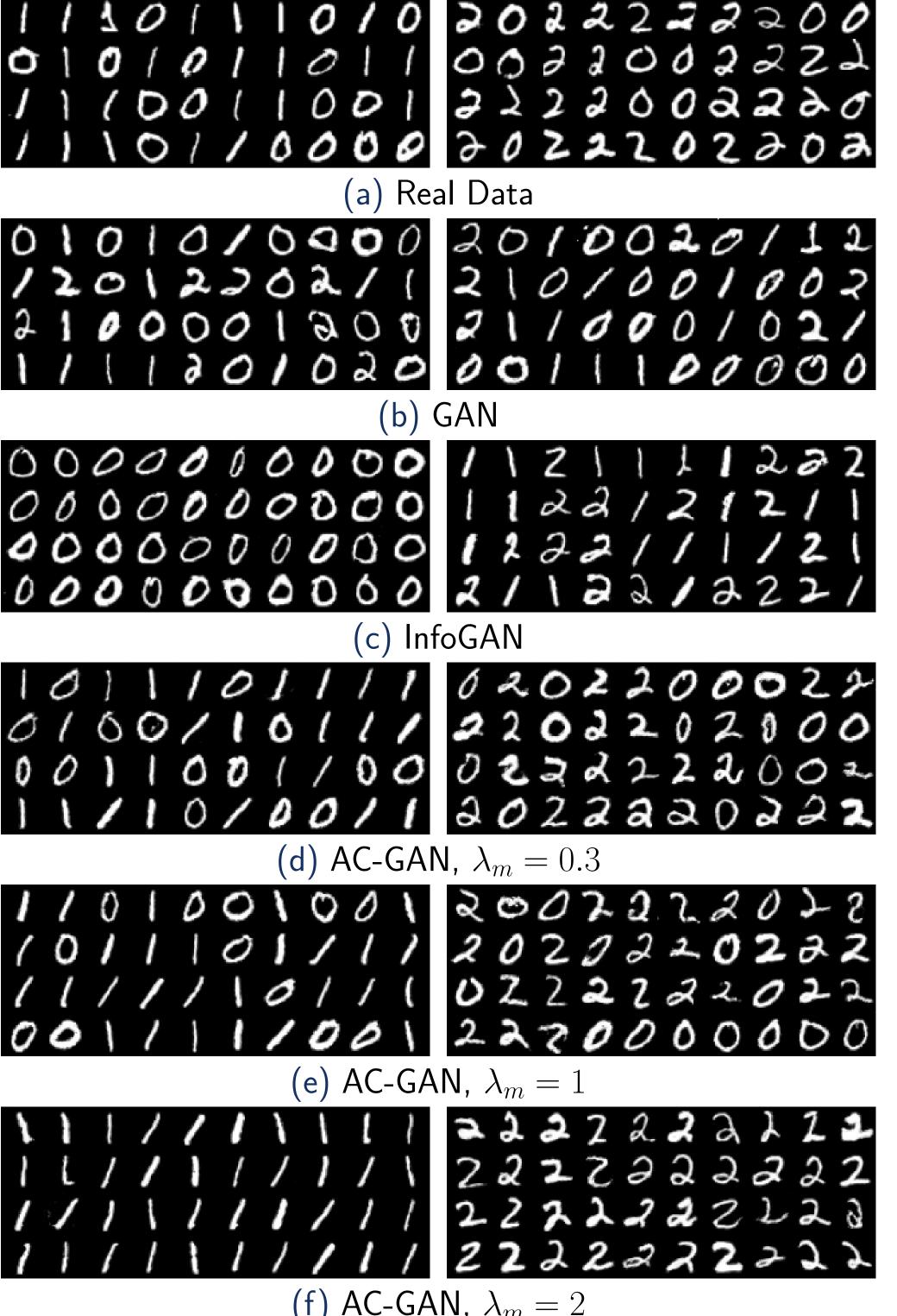




Figure: Visualization of samples from various model trained on the toy example. Each generative model incorporates a discrete latent variable. Left column: samples from y = A. Right column: samples from y = B.

Pathological Scenario

Figure: AC-GAN exhibits pathological behavior when $p^*(x)$ is concentrated near decision boundary of $p^*(y \mid x)$.

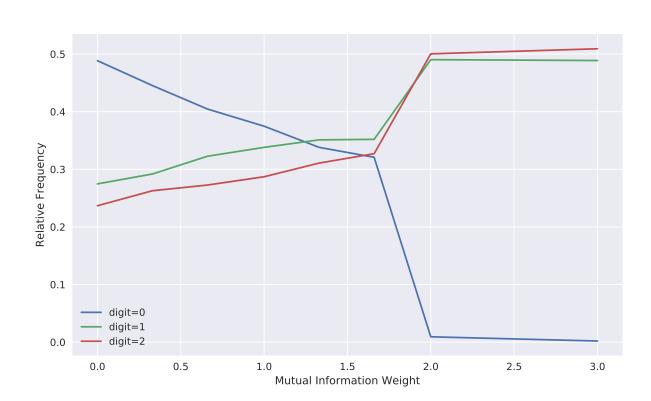


Figure: Digit distribution versus mutual information weight.

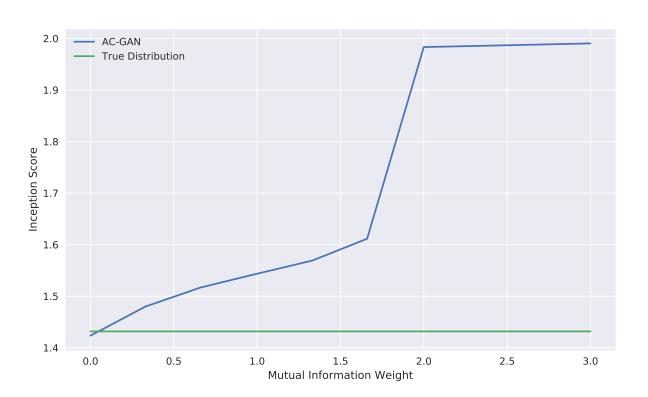


Figure: Inception Score versus mutual information weight.

AC-GAN on Labeled MNIST

• Real MNIST Inception Score: 9.80 • AC-GAN has higher Inception Score: 9.94 • AC-GAN generates "prettier" 1's

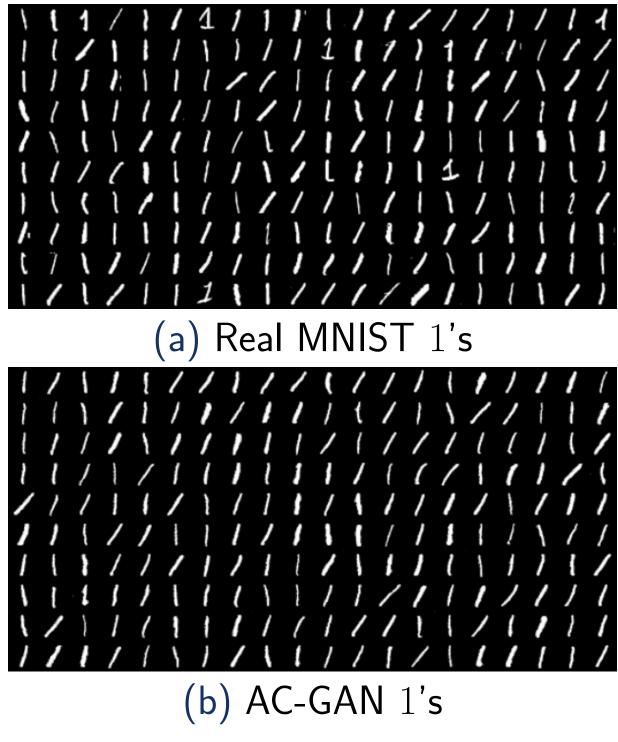


Figure: AC-GAN favors sans-serif 1's.

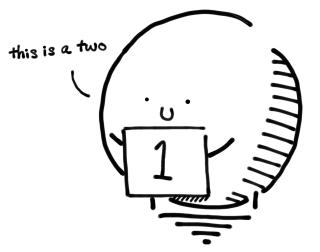


Figure: Serifed 1's look like 2's and are thus down-sampled.